1,227 research outputs found

    CO2 as moderator for biomass gasification

    Get PDF
    Biomass can be converted into gaseous fuel by high-temperature reactions with a gasifying agent. The gasifying agent consists, in most cases, of oxygen and of a moderator, which is usually water vapour. Here we show that waste CO2 can be used instead of, or together with, water vapour to moderate the process of biomass gasification in a catalytic fluidized bed of dolomitic limestone. Such use of CO2 increased substantially the carbon and energy conversion efficiency and decreased the amount of tars in the produced gas

    Dendrodendritic synaptic signals in olfactory bulb granule cells: local spine boost and global low-threshold spike

    Get PDF
    In the mammalian olfactory bulb, axonless granule cells process synaptic input and output reciprocally within large spines. The nature of the calcium signals that underlie the presynaptic and postsynaptic function of these spines is mostly unknown. Using two-photon imaging in acute rat brain slices and glomerular stimulation of mitral/tufted cells, we observed two forms of action potential-independent synaptic Ca2+ signals in granule cell dendrites. Weak activation of mitral/tufted cells produced stochastic Ca2+ transients in individual granule cell spines. These transients were strictly localized to the spine head, indicating a local passive boosting or spine spike. Ca2+ sources for these local synaptic events included NMDA receptors, voltage-dependent calcium channels, and Ca2+-induced Ca2+ release from internal stores. Stronger activation of mitral/tufted cells produced a low-threshold Ca2+ spike (LTS) throughout the granule cell apical dendrite. This global spike was mediated by T-type Ca2+ channels and represents a candidate mechanism for subthreshold lateral inhibition in the olfactory bulb. The coincidence of local input and LTS in the spine resulted in summation of local and global Ca2+ signals, a dendritic computation that could endow granule cells with subthreshold associative plasticity

    Mechanisms of lateral inhibition in the olfactory bulb: Efficiency and modulation of spike-evoked calcium influx into granule cells

    Get PDF
    Granule cells are axonless local interneurons that mediate lateral inhibitory interactions between the principal neurons of the olfactory bulb via dendrodendritic reciprocal synapses. This unusual arrangement may give rise to functional properties different from conventional lateral inhibition. Although granule cells spike, little is known about the role of the action potential with respect to their synaptic output. To investigate the signals that underlie dendritic release in these cells, two-photon microscopy in rat brain slices was used to image calcium transients in granule cell dendrites and spines. Action potentials evoked calcium transients throughout the dendrites, with amplitudes increasing with distance from soma and attaining a plateau level within the external plexiform layer, the zone of granule cell synaptic output. Transient amplitudes were, on average, equal in size in spines and adjacent dendrites. Surprisingly, both spine and dendritic amplitudes were strongly dependent on membrane potential, decreasing with depolarization and increasing with hyperpolarization from rest. Both the current-voltage relationship and the time course of inactivation were consistent with the known properties of T-type calcium channels, and the voltage dependence was blocked by application of the T-type calcium channel antagonists Ni2+ and mibefradil. In addition, mibefradil reduced action potential-mediated synaptic transmission from granule to mitral cells. The implication of a transiently inactivating calcium channel in synaptic release from granule cells suggests novel mechanisms for the regulation of lateral inhibition in the olfactory bulb

    Low-Complexity Decentralized Active Damping of One-Dimensional Structures

    Get PDF
    In the paper, we propose distributed feedback control laws for active damping of one-dimensional mechanical structures equipped with dense arrays of force actuators and position and velocity sensors. We consider proportional position and velocity feedback from the neighboring nodes with symmetric gains. Achievable control performance with respect to stability margin and damping ratio is discussed. Compared to full-featured complex controllers obtained by modern design methods like LQG, H-infinity, or mu-synthesis, these simplistic controllers are more suitable for experimental fine tuning and are less case-dependent, and they shall be easier to implement on the target future smart-material platforms

    Transient catalytic activity of calcined dolomitic limestone in a fluidized bed during gasification of woody biomass

    Get PDF
    Calcined dolomitic limestone mixed with silica sand in a fluidized bed can catalytically enhance the gasification of woody biomass. The lime is prone to attrition and carry over from the reactor and to deactivation caused by pore sintering; therefore, it has to be replenished continuously or periodically to maintain catalytic activity of the fluidized bed. The main aim of this paper was to explore the level of the decrease of the catalytic activity of the fluidized bed if the limestone is not replenished and to estimate a critical period for its top-up. Wood chips were gasified first in a silica sand fluidized bed (1080 g), to obtain background data without the catalytic effect of limestone. After 5 h of operation, dolomitic limestone (1050 g) was added to the fluidized bed and left to calcine. Its catalytic activity was monitored during the following 6 h. During the second part of the experiment, the yield of the main gases (H2, CO, CH4, CO2, and H2O) remained almost unchanged. The yield of minor organic gases and tars rose slightly but still remained far below the value attained with only silica sand. The heavy polyaromatic tar compounds were effectively decomposed during the first 3 h after the addition of dolomitic limestone. It was concluded that the catalytic activity of dolomitic lime remains in an acceptable level during the first 3 h after its addition into the fluidized bed, suggesting that periodic rather than continuous replenishment of limestone should be sufficient

    Probing the low-energy electron-scattering dynamics in liquids with high-harmonic spectroscopy

    Get PDF
    High-harmonic spectroscopy (HHS) is a nonlinear all-optical technique with inherent attosecond temporal resolution, which has been applied successfully to a broad variety of systems in the gas phase and solid state. Here, we extend HHS to the liquid phase, and uncover the mechanism of high-harmonic generation (HHG) for this phase of matter. Studying HHG over a broad range of wavelengths and intensities, we show that the cut-off (Ec) is independent of the wavelength beyond a threshold intensity, and find that Ec is a characteristic property of the studied liquid. We explain these observations within an intuitive semi-classical model based on electron trajectories that are limited by scattering to a characteristic length, which is connected to the electron mean-free path. Our model is validated against rigorous multi-electron time-dependent density-functional theory calculations in, both, supercells of liquid water with periodic boundary conditions, and large clusters of a variety of liquids. These simulations confirm our interpretation and thereby clarify the mechanism of HHG in liquids. Our results demonstrate a new, all-optical access to effective mean-free paths of slow electrons (≤10 eV) in liquids, in a regime that is inaccessible to accurate calculations, but is critical for the understanding of radiation damage to living tissue. Our work also establishes the possibility of resolving sub-femtosecond electron dynamics in liquids, which offers a novel, all-optical approach to attosecond spectroscopy of chemical processes in their native liquid environment

    Sintering Kinetics of Plasma-Sprayed Zirconia TBCs

    No full text
    A model of the sintering exhibited by EB-PVD TBCs, based on principles of free energy minimization, was recently published by Hutchinson et al. In the current paper, this approach is applied to sintering of plasma-sprayed TBCs and comparisons are made with experimental results. Predictions of through-thickness shrinkage and changing pore surface area are compared with experimental data obtained by dilatometry and BET analysis respectively. The sensitivity of the predictions to initial pore architecture and material properties are assessed. The model can be used to predict the evolution of contact area between overlying splats. This is in turn related to the through-thickness thermal conductivity, using a previously-developed analytical model
    corecore